面向开发者的LLM入门教程-聊天Chat:记忆(Memory): 记忆(Memory) 现在让我们更进一步,添加一些记忆功能。 我们将使用 ConversationBufferMemory 。它保存聊天消息……
哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“面向开发者的LLM入门教程-聊天Chat:记忆(Memory)”,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。
面向开发者的LLM入门教程-聊天Chat:记忆(Memory):
记忆(Memory)
现在让我们更进一步,添加一些记忆功能。
我们将使用 ConversationBufferMemory 。它保存聊天消息历史记录的列表,这些历史记录将在回答问题时与问题一起传递给聊天机器人,从而将它们添加到上下文中。
需要注意的是,我们之前讨论的上下文检索等方法,在这里同样可用。
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key=”chat_history”, # 与 prompt 的输入变量保持一致。
return_messages=True # 将以消息列表的形式返回聊天记录,而不是单个字符串
)
嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“面向开发者的LLM入门教程-聊天Chat:记忆(Memory)”的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!
还没有评论呢,快来抢沙发~