面向开发者的LLM入门教程-结合各种技术: 结合各种技术 为了去掉结果中的重复文档,我们在从向量数据库创建检索器时,可以将搜索类型设置为 MMR 。然后我们可以重新运行……
哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“面向开发者的LLM入门教程-结合各种技术”,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。
面向开发者的LLM入门教程-结合各种技术:
结合各种技术
为了去掉结果中的重复文档,我们在从向量数据库创建检索器时,可以将搜索类型设置为 MMR 。然后我们可以重新运行这个过程,可以看到我们返回的是一个过滤过的结果集,其中不包含任何重复的信息。
compression_retriever_chinese = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=vectordb_chinese.as_retriever(search_type = “mmr”)
)
question_chinese = “Matplotlib是什么?”
compressed_docs_chinese =
compression_retriever_chinese.get_relevant_documents(question_chinese)
pretty_print_docs(compressed_docs_chinese)
Document 1:
Matplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的
图形,⽤来绘制各种静态,动态,交互式的图表。
嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“面向开发者的LLM入门教程-结合各种技术”的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!
还没有评论呢,快来抢沙发~