面向开发者的LLM入门课程-处理输入:内心独白: 内心独白 在某些应用场景下,完整呈现语言模型的推理过程可能会泄露关键信息或答案,这并不可取。例如在教学应用中,我……
哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“面向开发者的LLM入门课程-处理输入:内心独白”,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。
面向开发者的LLM入门课程-处理输入:内心独白:
内心独白
在某些应用场景下,完整呈现语言模型的推理过程可能会泄露关键信息或答案,这并不可取。例如在教学应用中,我们希望学生通过自己的思考获得结论,而不是直接被告知答案。
针对这一问题。“内心独白”技巧可以在一定程度上隐藏语言模型的推理链。具体做法是,在 Prompt 中指示语言模型以结构化格式存储需要隐藏的中间推理,例如存储为变量。然后在返回结果时,仅呈现对用户有价值的输出,不展示完整的推理过程。这种提示策略只向用户呈现关键信息,避免透露答案。同时语言模型的推理能力也得以保留。适当使用“内心独白”可以在保护敏感信息的同时,发挥语言模型的推理特长。
总之,适度隐藏中间推理是Prompt工程中重要的技巧之一。开发者需要为不同用户制定不同的信息呈现策略。以发挥语言模型最大价值。
try:
if delimiter in response:
final_response = response.split(delimiter)[-1].strip()
else:
final_response = response.split(“:”)[-1].strip()
except Exception as e:
final_response = “对不起,我现在有点问题,请尝试问另外一个问题”
print(final_response)
很抱歉,我们目前没有可用的电视机产品。我们的产品范围主要包括计算机和笔记本电脑。如果您对其他产品有任何需求或疑问,请随时告诉我们。
在复杂任务中,我们往往需要语言模型进行多轮交互、逐步推理,才能完成整个流程。如果想在一个Prompt中完成全部任务,对语言模型的能力要求会过高,成功率较低。
因此,下一章将介绍一种更可靠的策略:将复杂任务分解为多个子任务,通过提示链(Prompt Chaining)step-by-step引导语言模型完成。具体来说,我们可以分析任务的不同阶段,为每个阶段设计一个简单明确的 Prompt 。我们将通过实例展示提示链的运用,以及如何科学拆分Prompt来引导语言模型递进完成多步骤任务。这是提示工程中非常重要的技能之一。
嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“面向开发者的LLM入门课程-处理输入:内心独白”的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!
还没有评论呢,快来抢沙发~