AI教程 2025年01月14日
0 收藏 0 点赞 5 浏览 1354 个字
摘要 :

面向开发者的LLM入门课程-语言模型: 语言模型 大语言模型(LLM)是通过预测下一个词的监督学习方式进行训练的。具体来说,首先准备一个包含数百亿甚至更多词的大规模文……

哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“面向开发者的LLM入门课程-语言模型”,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。

面向开发者的LLM入门课程-语言模型

面向开发者的LLM入门课程-语言模型:

语言模型

大语言模型(LLM)是通过预测下一个词的监督学习方式进行训练的。具体来说,首先准备一个包含数百亿甚至更多词的大规模文本数据集。然后,可以从这些文本中提取句子或句子片段作为模型输入。模型会根据当前输入 Context 预测下一个词的概率分布。通过不断比较模型预测和实际的下一个词,并更新模型参数最小化两者差异,语言模型逐步掌握了语言的规律,学会了预测下一个词。

在训练过程中,研究人员会准备大量句子或句子片段作为训练样本,要求模型一次次预测下一个词,通过反复训练促使模型参数收敛,使其预测能力不断提高。经过在海量文本数据集上的训练,语言模型可以达到十分准确地预测下一个词的效果。这种以预测下一个词为训练目标的方法使得语言模型获得强大的语言生成能力。

大型语言模型主要可以分为两类:基础语言模型和指令调优语言模型。

基础语言模型(Base LLM)通过反复预测下一个词来训练的方式进行训练,没有明确的目标导向。因此,如果给它一个开放式的 prompt ,它可能会通过自由联想生成戏剧化的内容。而对于具体的问题,基础语言模型也可能给出与问题无关的回答。例如,给它一个 Prompt ,比如”中国的首都是哪里?“,很可能它数据中有一段互联网上关于中国的测验问题列表。这时,它可能会用“中国最大的城市是什么?中国的人口是多少?”等等来回答这个问题。但实际上,您只是想知道中国的首都是什么,而不是列举所有这些问题。

相比之下,指令微调的语言模型(Instruction Tuned LLM)则进行了专门的训练,以便更好地理解问题并给出符合指令的回答。例如,对“中国的首都是哪里?”这个问题,经过微调的语言模型很可能直接回答“中国的首都是北京”,而不是生硬地列出一系列相关问题。指令微调使语言模型更加适合任务导向的对话应用。它可以生成遵循指令的语义准确的回复,而非自由联想。因此,许多实际应用已经采用指令调优语言模型。熟练掌握指令微调的工作机制,是开发者实现语言模型应用的重要一步。

from tool import get_completion
response = get_completion(“中国的首都是哪里?”)
print(response)

中国的首都是北京。

那么,如何将基础语言模型转变为指令微调语言模型呢?

这也就是训练一个指令微调语言模型(例如ChatGPT)的过程。

首先,在大规模文本数据集上进行无监督预训练,获得基础语言模型。这一步需要使用数千亿词甚至更多的数据,在大型超级计算系统上可能需要数月时间。

之后,使用包含指令及对应回复示例的小数据集对基础模型进行有监督 fine-tune,这让模型逐步学会遵循指令生成输出,可以通过雇佣承包商构造适合的训练示例。

接下来,为了提高语言模型输出的质量,常见的方法是让人类对许多不同输出进行评级,例如是否有用、是否真实、是否无害等。

然后,您可以进一步调整语言模型,增加生成高评级输出的概率。这通常使用基于人类反馈的强化学习(RLHF)技术来实现。

相较于训练基础语言模型可能需要数月的时间,从基础语言模型到指令微调语言模型的转变过程可能只需要数天时间,使用较小规模的数据集和计算资源。

面向开发者的LLM入门课程-Tokens
面向开发者的LLM入门课程-Tokens:Tokens 到目前为止对 LLM 的描述中,我们将其描述为一次预测一个单词,但实际上还有一个更重要的技...

嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“面向开发者的LLM入门课程-语言模型”的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!

微信扫一扫

支付宝扫一扫

版权: 转载请注明出处:https://www.ai-blog.cn/2520.html

相关推荐
01-15

面向开发者的LLM入门课程-路由链: 路由链 到目前为止,我们已经学习了大语言模型链和顺序链。但是…

215
01-15

面向开发者的LLM入门课程-顺序链: 顺序链 当只有一个输入和一个输出时,简单顺序链(SimpleSequen…

5
01-15

面向开发者的LLM入门课程-简单顺序链: 简单顺序链 顺序链(SequentialChains)是按预定义顺序执行…

5
01-15

面向开发者的LLM入门课程-大语言模型链: 模型链 链(Chains)通常将大语言模型(LLM)与提示(Pro…

5
01-15

面向开发者的LLM入门课程-对话储存英文版提示: 英文版提示 1.对话缓存储存 from langchain.chains…

5
01-15

面向开发者的LLM入门课程-对话摘要缓存储存: 对话摘要缓存储存 对话摘要缓存储存,使用 LLM 对到…

5
01-15

面向开发者的LLM入门课程-对话字符缓存储存: 对话字符缓存储存 使用对话字符缓存记忆,内存将限制…

5
01-15

面向开发者的LLM入门课程-对话缓存窗口储存: 对话缓存窗口储存 随着对话变得越来越长,所需的内存…

5
发表评论
暂无评论

还没有评论呢,快来抢沙发~

助力原创内容

快速提升站内名气成为大牛

扫描二维码

手机访问本站