AI教程 2025年01月14日
0 收藏 0 点赞 131 浏览 2603 个字
摘要 :

面向开发者的LLM入门课程-聊天机器人“订餐机器人”: 订餐机器人 在这一新的教程中,我们将探索如何构建一个 “点餐助手机器人”。这个机器人将被设计为自动收集用户信息,……

哈喽!伙伴们,我是小智,你们的AI向导。欢迎来到每日的AI学习时间。今天,我们将一起深入AI的奇妙世界,探索“面向开发者的LLM入门课程-聊天机器人“订餐机器人””,并学会本篇文章中所讲的全部知识点。还是那句话“不必远征未知,只需唤醒你的潜能!”跟着小智的步伐,我们终将学有所成,学以致用,并发现自身的更多可能性。话不多说,现在就让我们开始这场激发潜能的AI学习之旅吧。

面向开发者的LLM入门课程-聊天机器人“订餐机器人”

面向开发者的LLM入门课程-聊天机器人“订餐机器人”:

订餐机器人

在这一新的教程中,我们将探索如何构建一个 “点餐助手机器人”。这个机器人将被设计为自动收集用户信息,并接收来自比萨饼店的订单。让我们开始这个有趣的项目,深入理解它如何帮助简化日常的订餐流程。

1.构建机器人

下面这个函数将收集我们的用户消息,以便我们可以避免像刚才一样手动输入。这个函数将从我们下面构建的用户界面中收集 Prompt ,然后将其附加到一个名为上下文( context )的列表中,并在每次调用模型时使用该上下文。模型的响应也会添加到上下文中,所以用户消息和模型消息都被添加到上下文中,上下文逐渐变长。这样,模型就有了需要的信息来确定下一步要做什么。

def collect_messages(_):
prompt = inp.value_input
inp.value = ”
context.append({‘role’:’user’, ‘content’:f”{prompt}”})
response = get_completion_from_messages(context)
context.append({‘role’:’assistant’, ‘content’:f”{response}”})
panels.append(
pn.Row(‘User:’, pn.pane.Markdown(prompt, width=600)))
panels.append(
pn.Row(‘Assistant:’, pn.pane.Markdown(response, width=600, style=
{‘background-color’: ‘#F6F6F6’})))
return pn.Column(*panels)

现在,我们将设置并运行这个 UI 来显示订单机器人。初始的上下文包含了包含菜单的系统消息,在每次调用时都会使用。此后随着对话进行,上下文也会不断增长。

!pip install panel

如果你还没有安装 panel 库(用于可视化界面),请运行上述指令以安装该第三方库。

# 中文
import panel as pn # GUI
pn.extension()
panels = [] # collect display
context = [{‘role’:’system’, ‘content’:”””
你是订餐机器人,为披萨餐厅自动收集订单信息。
你要首先问候顾客。然后等待用户回复收集订单信息。收集完信息需确认顾客是否还需要添加其他内容。
最后需要询问是否自取或外送,如果是外送,你要询问地址。
最后告诉顾客订单总金额,并送上祝福。
请确保明确所有选项、附加项和尺寸,以便从菜单中识别出该项唯一的内容。
你的回应应该以简短、非常随意和友好的风格呈现。
菜单包括:
菜品:
意式辣香肠披萨(大、中、小) 12.95、10.00、7.00
芝士披萨(大、中、小) 10.95、9.25、6.50
茄子披萨(大、中、小) 11.95、9.75、6.75
薯条(大、小) 4.50、3.50
希腊沙拉 7.25
配料:
奶酪 2.00
蘑菇 1.50
香肠 3.00
加拿大熏肉 3.50
AI酱 1.50
辣椒 1.00
饮料:
可乐(大、中、小) 3.00、2.00、1.00
雪碧(大、中、小) 3.00、2.00、1.00
瓶装水 5.00
“””} ] # accumulate messages
inp = pn.widgets.TextInput(value=”Hi”, placeholder=’Enter text here…’)
button_conversation = pn.widgets.Button(name=”Chat!”)
interactive_conversation = pn.bind(collect_messages, button_conversation)
dashboard = pn.Column(
inp,
pn.Row(button_conversation),
pn.panel(interactive_conversation, loading_indicator=True, height=300),
)
dashboard

运行如上代码可以得到一个点餐机器人,下图展示了一个点餐的完整流程:

面向开发者的LLM入门课程-聊天机器人“订餐机器人”

2.创建JSON摘要

此处我们另外要求模型创建一个 JSON 摘要,方便我们发送给订单系统。

因此我们需要在上下文的基础上追加另一个系统消息,作为另一条指示 (instruction) 。我们说创建一个刚刚订单的 JSON 摘要,列出每个项目的价格,字段应包括:

1. 披萨,包括尺寸
2. 配料列表
3. 饮料列表
4. 辅菜列表,包括尺寸,
5. 总价格。

此处也可以定义为用户消息,不一定是系统消息。

请注意,这里我们使用了一个较低的温度,因为对于这些类型的任务,我们希望输出相对可预测。

messages = context.copy()
messages.append(
{‘role’:’system’, ‘content’:
”’创建上一个食品订单的 json 摘要。
逐项列出每件商品的价格,字段应该是 1) 披萨,包括大小 2) 配料列表 3) 饮料列表,包括大小 4) 配菜
列表包括大小 5) 总价
你应该给我返回一个可解析的Json对象,包括上述字段”’},
)
response = get_completion_from_messages(messages, temperature=0)
print(response)

{
“披萨”: {
“意式辣香肠披萨”: {
“大”: 12.95,
“中”: 10.00,
“小”: 7.00
},
“芝士披萨”: {
“大”: 10.95,
“中”: 9.25,
“小”: 6.50
},
“茄子披萨”: {
“大”: 11.95,
“中”: 9.75,
“小”: 6.75
}
},
“配料”: {
“奶酪”: 2.00,
“蘑菇”: 1.50,
“香肠”: 3.00,
“加拿大熏肉”: 3.50,
“AI酱”: 1.50,
“辣椒”: 1.00
},
“饮料”: {
“可乐”: {
“大”: 3.00,
“中”: 2.00,
“小”: 1.00
},
“雪碧”: {
“大”: 3.00,
“中”: 2.00,
“小”: 1.00
},
“瓶装水”: 5.00
}
}

我们已经成功创建了自己的订餐聊天机器人。你可以根据自己的喜好和需求,自由地定制和修改机器人的系统消息,改变它的行为,让它扮演各种各样的角色,赋予它丰富多彩的知识。让我们一起探索聊天机器人的无限可能性吧!

面向开发者的LLM入门课程-聊天机器人英文版
面向开发者的LLM入门课程-聊天机器人英文版:英文版 1.讲笑话 messages = [ {'role':'system', 'content':'You are an assistant...

嘿,伙伴们,今天我们的AI探索之旅已经圆满结束。关于“面向开发者的LLM入门课程-聊天机器人“订餐机器人””的内容已经分享给大家了。感谢你们的陪伴,希望这次旅程让你对AI能够更了解、更喜欢。谨记,精准提问是解锁AI潜能的钥匙哦!如果有小伙伴想要了解学习更多的AI知识,请关注我们的官网“AI智研社”,保证让你收获满满呦!

微信扫一扫

支付宝扫一扫

版权: 转载请注明出处:https://www.ai-blog.cn/2508.html

相关推荐
01-15

面向开发者的LLM入门课程-路由链: 路由链 到目前为止,我们已经学习了大语言模型链和顺序链。但是…

215
01-15

面向开发者的LLM入门课程-顺序链: 顺序链 当只有一个输入和一个输出时,简单顺序链(SimpleSequen…

131
01-15

面向开发者的LLM入门课程-简单顺序链: 简单顺序链 顺序链(SequentialChains)是按预定义顺序执行…

131
01-15

面向开发者的LLM入门课程-大语言模型链: 模型链 链(Chains)通常将大语言模型(LLM)与提示(Pro…

131
01-15

面向开发者的LLM入门课程-对话储存英文版提示: 英文版提示 1.对话缓存储存 from langchain.chains…

131
01-15

面向开发者的LLM入门课程-对话摘要缓存储存: 对话摘要缓存储存 对话摘要缓存储存,使用 LLM 对到…

131
01-15

面向开发者的LLM入门课程-对话字符缓存储存: 对话字符缓存储存 使用对话字符缓存记忆,内存将限制…

131
01-15

面向开发者的LLM入门课程-对话缓存窗口储存: 对话缓存窗口储存 随着对话变得越来越长,所需的内存…

131
发表评论
暂无评论

还没有评论呢,快来抢沙发~

助力原创内容

快速提升站内名气成为大牛

扫描二维码

手机访问本站